Всё дело в том, что вирусы и бактерии, также способны привыкать и бороться с нашими оборонительными препаратами. Так по мнению ученых, уже через 20 лет, бактерии на столько мутируют, что мы будем не способны с ними бороться. В данный момент, пациент, проходя лечение на больничной койке, имеет возможность взять на себя все больничные штаммы. Не говоря уже о внешних факторах. Ещё пару десятков лет назад, антибиотики были гарантом стабильности здоровья нации, но к сожалению, уже сегодня всё по-другому. Именно поэтому мировому сообществу здравоохранения приходится задуматься. В далеком 1884 году датский ученый Грам предложил свой метод исследования бактерий, который используется до сих пор. Для окрашивания клеточной мембраны стенки бактерии используется специальный анилиновый краситель и раствор йода для фиксации цвета. Бактерии, которые после промывания прочно окрашивались, получили название грамположительных, а те, что обесцвечивались, – грамотрицательных. Патогены в зависимости от формы делятся на кокки (круглые), палочки и извитые. Например, есть грамположительные кокки: стафилококки (гноеродные), стрептококки (вызывают воспалительные гнойные процессы у человека и животных). Грамотрицательные кокки: менингококки (возбудители менингита), гонококки (возбудители гонореи), пневмококки (возбудители пневмонии). Извитые патогены (например, спирохеты, спириллы) грамотрицательны, как скажем, возбудитель сифилиса – закрученные спиралевидные бактерии (бледная трепонема). Палочки являются возбудителями сибирской язвы, дифтерии, туберкулеза и других болезней.
В свою очередь антибиотики бывают узкого спектра действия (только против грамположительных или грамотрицательных бактерий) или широкого (воздействуют и на те, и на другие). Важнейшие классы антибиотиков терапевтического назначения: b-лактамные (пенициллины, цефалоспорины – действуют на грамположительные и грамотрицательные бактерии), амино-гликозидные (стрептомицин, амикацин, гентамицин – в основном на грамотрицательные бактерии), тетрациклины (на грамположительные и грамотрицательные, хламидии, простейшие), макролиды (антибактериальные и противогрибковые – на грамположительные, грибы, некоторые простейшие), полипептидные и депсипептидные (полимиксины, ацитрацины – в основном грамотрицательные бактерии).
Почему вырабатывается устойчивость
Андрей Летаров отмечает, что, с одной стороны, далеко не всегда антибиотики правильно применяются при лечении. Зачастую предписанный врачом курс пациенты выдерживают не до конца – бросают пить лекарства, как только наступит улучшение, а между тем не все микробы в организме успевают погибнуть и дают о себе знать через какое-то время – инфекция возвращается снова и требует повторного курса, а затем, возможно, и становится хронической. Это дает патогенам возможность научиться лучше противостоять антибиотикам. Дезинфицирующие средства в больницах тоже "учат" микробы приспосабливаться: мутации в ДНК бактерий позволяют противостоять лекарствам, и эволюционировавшие бактерии-мутанты становятся все более опасными для пациентов стационаров. Есть и другой существенный источник устойчивых бактерий: в сельском хозяйстве (животноводстве, птицеводстве) антибиотики часто используются практически бесконтрольно. Ими же могут быть обработаны растительные продукты, особенно если их транспортируют с континента на континент и необходимо увеличить сроки хранения. В итоге продукты, содержащие антибиотики, попадают на стол. Сами того не ведая, мы становимся пассивными потребителями этих лекарств, пусть и в минимальных дозах. Никто не знает, каким будет кумулятивный накопительный эффект для человека, получающего регулярно, такие казалось бы, незначительные дозы. Вспомним еще о быстрорастущем населении Земли (сегодня оно составляет более 7 миллиардов человек) и глобальном характере международной миграции – очевидно, что у бактерий появилось больше возможностей обмениваться информацией и в ходе генетического переноса производить все более неуязвимые штаммы.
Профессор химической биологии Ричард Ли из St. Jude Children's Research Hospital в Мемфисе, открывший в 2014 году полусинтетический антибиотик спектинамидес, рассказал в интервью, что источник возрастающей устойчивости к антибиотикам – страны третьего мира, где низкий уровень здравоохранения: "Очевидно, что за 70 с лишним лет использования антибиотиков бактерии сумели приспособиться практически ко всем противомикробным средствам. Однако пока в мире будут оставаться такие бедные страны, как, скажем, Индия, где многие местные жители покупают на рынке горсть таблеток и принимают их все сразу (там так решается проблема бактериальных инфекций), большого порядка в употреблении антибиотиков мы не наведем". Кто-то, путешествуя по Индии, обращается к врачу или попадает в госпиталь с диареей, а потом возвращается в Европу или в США, "обогащенный" бактериями-мутантами. Ричард Ли рассказал о выявленном в 2008 году гене, кодирующем им фермент Нью-Дели NDM-1 (металло-бета-лактамаза-1) – это один из многих белков, которые блокируют действие карбапанемов. Этот ген распространяется от одного штамма к другому в ходе горизонтального переноса и воспроизводит бактерии-монстры. Фактически это может выглядеть так: кто-то, путешествуя по Индии, обращается к врачу или попадает в госпиталь с диареей, а потом возвращается в Европу или в США, "обогащенный" бактериями-мутантами. Заболевание может возобновиться, и такой пациент вполне может попасть теперь уже в госпиталь на родине, распространяя опасные вариации патогенов еще дальше.
Борьба
Как бороться с изменчивыми патогенами? Самый очевидный путь – разработка новых, более совершенных антибиотиков. Этот процесс выглядит примерно так. Естественные продуценты антибиотиков – актиномицеты, плесневые грибы, бактерии. Главное место их обитания – почва. Так, чтобы выделить микроорганизмы, образующие антибиотики, берутся пробы почвы, их высушивают и делают высевы на специальные питательные среды. Сегодня испытываются новые продуценты, например, миксобактерии, производящие большое количество противомикробных агентов. Растения, животные и даже микробы исследуются в качестве возможных продуцентов новых антимикробных препаратов. Возможно, новые антимикробные ресурсы скрывают и океанские глубины. Пути получения новых антибиотиков – это мутагенез (искусственное получение мутаций с помощью мутагенов), клеточная и генная инженерия. Мутагенез происходит в ходе использования мутантных штаммов, у которых блокирован синтез отдельных фрагментов молекулы антибиотика. Клеточная инженерия помогает получать гибридные антибиотики, например, с новыми комбинациями агликона и сахаров. Генетическая инженерия позволяет вводить в геном микроорганизма информацию о ферменте, необходимом для модификации продуицируемого антибиотика.
Примером разработки нового лекарства с использованием этих сложных технологий является спектинамидес – лекарство против туберкулеза (ТБ). Это инфекционное заболевание вызывается микобактерией (Mtb), распространяется по воздуху и обычно поражает легкие, что становится ежегодно причиной смерти 1,3 миллиона человек. ТБ лечится антибиотиками, но в последнее время мультирезистентная (MDR) бактерия ТБ существенно затруднила лечение. С ней приходится бороться в течение 2 лет, используя различную комбинации антибиотиков, которые весьма токсичны. Подобная терапия может иметь серьезный побочный эффект (например, гепато- или нефротоксические реакции). Помимо мультирезистентной бактерии появилась и микобактерия с продленным эффектом резистентности (XTB), отмеченная в 92 странах: некоторые штаммы ХТВ устойчивы ко всем видам лекарств. В течение шести лет над этой проблемой работал интернациональный коллектив ученых под руководством Ричарда Ли. В итоге ученые доказали на мышах эффективность нового лекарства спектинамидес для лечения туберкулеза с минимальным побочным эффектом. Изначально ученые использовали препарат для лечения гонорейных инфекций – спектиномицин, который блокирует рибосомы патогенных бактерий, и тем самым останавливает их рост. Исследователи проанализировали структуру антибиотика и испробовали различные модификации, чтобы получить новый класс. Этот полусинтетический антибиотик имеет высокую активность против обеих – MDR и XTB – и не "выталкивается" из ТБ-бактерий, что делает лекарство более эффективным.
Экономический тормоз
В США в 1980–84 годах появилось около 18 новых антибиотиков, 10 лет спустя – около 12, в начале нового столетия – 4 и, наконец, в 2010–2014 – только один. Андрей Летаров отмечает, что создание нового лекарства от лаборатории до рынка – процесс долгий и затратный. К тому же классы антибиотиков, получаемых из легко воспроизводимых продуцентов, похоже, оказались исчерпаны. Разработки нового антибиотика ведутся научными коллективами годами, и вернуть вложенные средства весьма проблематично. Так, Британское фармацевтическое сообщество отмечает, что доведение нового лекарства от момента изобретения до рынка занимает в среднем 12 лет и обходится в сумму от 50 миллионов фунтов до миллиарда. Проблема не только в высокой стоимости и времени, но и в технической сложности подобных разработок. По данным Европейского медицинского агентства, в лабораториях рассматривались около 90 новых антибактериальных агентов, но ни один из них не проявил себя как принципиально новый механизм действия. А американское агентство FDA (Food and Drug Administration) отмечает, что из 61 антибиотика, рекомендованного к производству с 1980 по 2009 год, 43 процента затем были сняты с продажи из-за серьезных побочных эффектов. При этом показатель снятия с продажи других лекарств – не антибиотиков – всего 13 процентов.
Голая статистика показывает, как мы проигрываем гонку вооружений с бактериями: в США в 1980–84 годах появилось около 18 новых антибиотиков, 10 лет спустя – около 12, в начале нового столетия – 4 и, наконец, в 2010–2014 – только один. Эти данные безусловно коррелируют с финансовыми показателями: за последние пять лет антибиотики продемонстрировали средний годовой прирост на 4 процента в сравнении с 16,7 и 16,4 процентами соответственно на антивирусные лекарства и вакцины. Хотя антибиотики остаются на третьем месте по прибыльности для фармацевтических компаний после препаратов для центральной нервной и кардио-васкулярной систем, в 2003 году лучше всего продаваемый антибиотик заработал 2,01 миллиарда долларов, а липид, производимый той же компанией, – 9,2 миллиарда (данные Комитета по науке и технологиям Великобритании).
Сейчас правительства разных стран обсуждают меры, которые могли бы повысить мотивацию фармацевтических компаний к разработке новых антибиотиков. Это могут быть налоговые скидки или, например, закрепление за производителем эксклюзивных прав на продажу нового лекарства и его аналогов в течение пяти лет. В США и Великобритании предполагается ввести финансовые рычаги, которые помогут уменьшить употребление антибиотиков в немедицинских целях (например, высокие штрафы или заградительные налоги в животноводстве). ВОЗ разрабатывает собственный план спасения человечества от бактериальных инфекций, который будет озвучен на 68-й ассамблее. В нем также будет содержаться призыв к правительствам найти экономические рычаги, стимулирующие исследования в области устойчивости к антибиотикам, увеличить инвестиции в диагностические средства, новые лекарства и вакцины.
Приказано: выжить
Что же в сухом остатке? Вот мнение Андрея Летарова: "До жизни, из которой будут полностью вытеснены антибиотики, человечеству еще далеко. Так что я бы не стал сгущать краски. А пока посоветовал бы "маленькие хитрости" – как можно меньше использовать антибиотики в повседневной жизни, беречь себя, лечиться вовремя". Ричард Ли считает, что нужно уделять еще больше внимания профилактике: "Поскольку проблема устойчивости к антибиотикам становится общемировой, лучший способ обезопасить себя от бактериальной и вирусной инфекции – это глобальная профилактика. Мы все сейчас тесно связаны, поэтому стоило бы продумать общемировую стратегию. По моим прогнозам, с учетом глобализации резистентность к антибиотикам в будущем будет иметь еще более серьезный экономический эффект. Бактерии существуют уже миллиарды лет, они научились мутировать, и чем лучше мы "вооружаемся", тем крепче становится их "броня"
date: 17 May 2016